Tags
Language
Tags
April 2024
Su Mo Tu We Th Fr Sa
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4
https://canv.ai/
The picture is generated by canv.ai

We are excited to announce that Canv.ai now features a built-in translator, allowing you to communicate in your native language. You can write prompts in your language, and they will be automatically translated into English, facilitating communication and the exchange of ideas!

We value freedom of speech and guarantee the absence of censorship on Canv.ai. At the same time, we hope and believe in the high moral standards of our users, which will help maintain a respectful and constructive atmosphere.


👉 Check for yourself!

Many-Body Methods for Atoms, Molecules and Clusters

Posted By: AvaxGenius
Many-Body Methods for Atoms, Molecules and Clusters

Many-Body Methods for Atoms, Molecules and Clusters by Jochen Schirmer
English | EPUB (True) | 2018 | 330 Pages | ISBN : 3319936018 | 16.4 MB

This book provides an introduction to many-body methods for applications in quantum chemistry. These methods, originating in field-theory, offer an alternative to conventional quantum-chemical approaches to the treatment of the many-electron problem in molecules. Starting with a general introduction to the atomic and molecular many-electron problem, the book then develops a stringent formalism of field-theoretical many-body theory, culminating in the diagrammatic perturbation expansions of many-body Green's functions or propagators in terms of Feynman diagrams. It also introduces and analyzes practical computational methods, such as the field-tested algebraic-diagrammatic construction (ADC) schemes. The ADC concept can also be established via a wave-function based procedure, referred to as intermediate state representation (ISR), which bridges the gap between propagator and wave-function formulations. Based on the current rapid increase in computer power and the development of efficient computational methods, quantum chemistry has emerged as a potent theoretical tool for treating ever-larger molecules and problems of chemical and physical interest. Offering an introduction to many-body methods, this book appeals to advanced students interested in an alternative approach to the many-electron problem in molecules, and is suitable for any courses dealing with computational methods in quantum chemistry.