Tags
Language
Tags
March 2024
Su Mo Tu We Th Fr Sa
25 26 27 28 29 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6

Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees (Memoirs of the American Mathematical Society)

Posted By: Nice_smile)
Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees (Memoirs of the American Mathematical Society)

Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees (Memoirs of the American Mathematical Society) by Lee Mosher
English | 2011 | ISBN: 0821847120 | 105 Pages | PDF | 962.31 KB

This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if $\mathcal{G}$ is a finite graph of coarse Poincare duality groups, then any finitely generated group quasi-isometric to the fundamental group of $\mathcal{G}$ is also the fundamental group of a finite graph of coarse Poincare duality groups, and any quasi-isometry between two such groups must coarsely preserve the vertex and edge spaces of their Bass-Serre trees of spaces. Besides some simple normalization hypotheses, the main hypothesis is the "crossing graph condition", which is imposed on each vertex group $\mathcal{G}_v$ which is an $n$-dimensional coarse Poincare duality group for which every incident edge group has positive codimension: the crossing graph of $\mathcal{G}_v$ is a graph $\epsilon_v$ that describes the pattern in which the codimension 1 edge groups incident to $\mathcal{G}_v$ are crossed by other edge groups incident to $\mathcal{G}_v$, and the crossing graph condition requires that $\epsilon_v$ be connected or empty.