Tags
Language
Tags
March 2024
Su Mo Tu We Th Fr Sa
25 26 27 28 29 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6

"Quantum Dynamics: Applications in Biological and Materials Systems" by Eric R. Bittner

Posted By: exLib
"Quantum Dynamics: Applications in Biological and Materials Systems" by Eric R. Bittner

"Quantum Dynamics: Applications in Biological and Materials Systems" by Eric R. Bittner
CRC Press, Taylor & Francis Group | 2010 | ISBN: 1420080539 B005H6YE1S 9781420080537 9781439882146 | 336 pages | PDF | 6 MB

This book bridges the gap between what is traditionally taught in a one-semester quantum chemistry course and the modern field of chemical dynamics, presenting the quantum theory of charge and energy transport in biological systems and optical-electronic materials from a dynamic perspective. The book reviews different ways in which one can represent the evolution of a quantum state, explores the quantum density matrix, and examines the basis for excitation energy transfer between molecules.


The book begins by reviewing the concepts of classical mechanics that are necessary for studying quantum mechanics. It discusses waves and wave functions and then moves on to an exploration of semiclassical quantum mechanics methods, an important part of the development and utilization of quantum theory.
The main focus of the book is the chapter on quantum dynamics, which begins with a brief review of the bound states of a coupled two-level system. This is discussed with a time-independent as well as a time-dependent perspective.
The book also explores what happens when the two-level system has an additional harmonic degree of freedom that couples the transitions between the two states.
Later chapters describe the pi electronic structure of conjugated organic systems and discuss electron-phonon coupling in conjugated systems and transport and dynamics in extended systems.

Contents
Preface
About the Author
1. Survey of Classical Mechanics
2. Waves and Wave Functions
3. Semiclassical Quantum Mechanics
4. Quantum Dynamics (and Other Un-American Activities)
5. Representations and Dynamics
6. Quantum Density Matrix
7. Excitation Energy Transfer
8. Electronic Structure of Conjugated Systems
9. Electron-Phonon Coupling in Conjugated Systems
10. Lattice Models for Transport and Structure
A: Miscellaneous Results and Constants
References
Index
with TOC BookMarkLinks