Tags
Language
Tags
April 2024
Su Mo Tu We Th Fr Sa
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4

DGT-based Measurement of Phosphorus in Sediment Microzones and Rhizospheres

Posted By: Underaglassmoon
DGT-based Measurement of Phosphorus in Sediment Microzones and Rhizospheres

DGT-based Measurement of Phosphorus in Sediment Microzones and Rhizospheres
Springer | Geochemistry | June 20, 2016 | ISBN-10: 9811007209 | 170 pages | pdf | 6.17 mb

Authors: Wang, Shengrui, Wu, Zhihao
Introduces DGT (diffusive gradients in thin films) and related techniques to solve the relative problems of P-release and -transfer across sediment/water interface and sediment/root interface
Provides formulas and equations
Presents the DGT technique in two lakes (Dianchi and Erhai lakes) in southwest of China


This book focuses on the development of DGT (diffusive gradients in thin films) and the related techniques for measuring and investigating the geochemical process and P transfer across the sediment/water or sediment/root interface in lakes. A series of DGT techniques such as new types of probes, test methods in sediment or the rhizosphere, DIFS (DGT induced fluxes in sediments and soils) model for kinetic P exchange, CID (computer imaging densitometry) for S(-II), and microchelex gel/LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) have been developed.
The corresponding chapters on the theory and methodology of DGT, the “internal P loading” or P transfer across sediment/root in two lakes, provide insights into the research method and conclusions, including the P release mechanism, the quantification of “internal P loading”, kinetic P exchange in DGT/sediment interface, Fe- or S(-II)-microniches at submillimeter scales in sediments for the prediction of P release, and DGT as a surrogate for the prediction of P uptake by roots.
It also offers new perspectives in the fields of P analysis and P process in micro-interfaces in lakes using DGT techniques. The P remobilization from Fe-bound P, the coupled Fe-S(-II)-P geochemical reaction and algae biomass breakdown causing P release, are elucidated using DGT methods in sediment layers. DGT parameters and curves for time or distance derived from DIFS can be used to assess kinetic P release in the sediment microzone. CID and LA-ICP-MS methods deliver Fe- and S(-II) images at submillimeter scales, which can be used for the quantification of flux related to microniche peaks and the prediction of P release from Fe-microniche or Fe-S(-II)-P geochemical reactions. DGT measurements in-situ in rhizosphere or rhizonbox can give CE (effective concentration) and CDGT values for the prediction of P accumulated in plant tissues.
This book provides a valuable reference resource for senior graduate students, lecturers and researchers in the fields of the geochemical process of eutrophic elements in lakes, lake eutrophication mechanism and environmental analysis.

Number of Illustrations and Tables
30 b/w illustrations, 40 illustrations in colour
Topics
Geochemistry
Environmental Chemistry
Environmental Science and Engineering
Monitoring / Environmental Analysis
Geoecology / Natural Processes

Click Here to Buy the Hardcover from Springer



Click Here for More books