Tags
Language
Tags
March 2024
Su Mo Tu We Th Fr Sa
25 26 27 28 29 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6

Relativistic Dissipative Hydrodynamic Description of the Quark-Gluon Plasma (Repost)

Posted By: advisors
Relativistic Dissipative Hydrodynamic Description of the Quark-Gluon Plasma (Repost)

Relativistic Dissipative Hydrodynamic Description of the Quark-Gluon Plasma By Akihiko Monnai
2014 | 142 Pages | ISBN: 4431547975 | PDF | 3 MB


This thesis presents theoretical and numerical studies on phenomenological description of the quark–gluon plasma (QGP), a many-body system of elementary particles. The author formulates a causal theory of hydrodynamics for systems with net charges from the law of increasing entropy and a momentum expansion method. The derived equation results can be applied not only to collider physics, but also to the early universe and ultra-cold atoms. The author also develops novel off-equilibrium hydrodynamic models for the longitudinal expansion of the QGP on the basis of these equations. Numerical estimations show that convection and entropy production during the hydrodynamic evolution are key to explaining excessive charged particle production, recently observed at the Large Hadron Collider. Furthermore, the analyses at finite baryon density indicate that the energy available for QGP production is larger than the amount conventionally assumed.