Tags
Language
Tags
April 2024
Su Mo Tu We Th Fr Sa
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4

Data Just Right: Practical Big Data Analytics (Repost)

Posted By: roxul
Data Just Right: Practical Big Data Analytics (Repost)

Michael Manoochehri, "Data Just Right: Practical Big Data Analytics"
English | ISBN: 0321898656 | 2013 | 256 pages | EPUB | 7 MB

Making Big Data Work: Real-World Use Cases and Examples, Practical Code, Detailed Solutions

Large-scale data analysis is now vitally important to virtually every business. Mobile and social technologies are generating massive datasets; distributed cloud computing offers the resources to store and analyze them; and professionals have radically new technologies at their command, including NoSQL databases. Until now, however, most books on “Big Data” have been little more than business polemics or product catalogs. Data Just Right is different: It’s a completely practical and indispensable guide for every Big Data decision-maker, implementer, and strategist.

Michael Manoochehri, a former Google engineer and data hacker, writes for professionals who need practical solutions that can be implemented with limited resources and time. Drawing on his extensive experience, he helps you focus on building applications, rather than infrastructure, because that’s where you can derive the most value.

Manoochehri shows how to address each of today’s key Big Data use cases in a cost-effective way by combining technologies in hybrid solutions. You’ll find expert approaches to managing massive datasets, visualizing data, building data pipelines and dashboards, choosing tools for statistical analysis, and more. Throughout, the author demonstrates techniques using many of today’s leading data analysis tools, including Hadoop, Hive, Shark, R, Apache Pig, Mahout, and Google BigQuery.

Coverage includes

Mastering the four guiding principles of Big Data success—and avoiding common pitfalls

Emphasizing collaboration and avoiding problems with siloed data

Hosting and sharing multi-terabyte datasets efficiently and economically

“Building for infinity” to support rapid growth

Developing a NoSQL Web app with Redis to collect crowd-sourced data

Running distributed queries over massive datasets with Hadoop, Hive, and Shark

Building a data dashboard with Google BigQuery

Exploring large datasets with advanced visualization

Implementing efficient pipelines for transforming immense amounts of data

Automating complex processing with Apache Pig and the Cascading Java library

Applying machine learning to classify, recommend, and predict incoming information

Using R to perform statistical analysis on massive datasets

Building highly efficient analytics workflows with Python and Pandas

Establishing sensible purchasing strategies: when to build, buy, or outsource

Previewing emerging trends and convergences in scalable data technologies and the evolving role of the Data Scientist
Download